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ABSTRACT

Two�dimensional idealized dry and moist numerical simulations are performed and analyzed2

with a nonhydrostatic, fully compressible spectral element model. The dry numerical tests

consist of a linear hydrostatic mountain wave and a squall line is the basis for the moist4

simulations. A desired spatial accuracy with a spectral element model is determined by two

parameters, a number of elements (h) and a polynomial order (p) of the basis functions. In6

this paper, the range of average horizontal resolution varies from 0.2 km to 10 km.

Dry experiments are compared to an analytic solution for accuracy. It is found that the8

nominal resolution (∆x) of less than 2 km is su�cient to minimize the error, while resolutions

of 500 m or less show no additional error reduction and are computationally expensive. When10

compared at a similar spatial resolution, the computational cost of the spectral element model

compared to a �nite�di�erence model is an order of magnitude larger, but the accuracy gain12

is signi�cant with the error an order of magnitude smaller for the spectral element model

when ∆x is less than 1 km. If the acceptable error is known a priori, the spectral element14

model is less costly compared to the �nite�di�erence model.

Evolution of a simulated squall line is compared across the h�p space and evaluated16

with the help of three integrated quantities: total precipitation accumulation, maximum

vertical velocity and maximum precipitaton rate. The squall line is adequately resolved18

when the nominal resolution (∆x) is less than 2 km, but in addition, the polynomial order

(p) needs to be at least 5. The analysis of the integrated quantities across the parameter20

space consistently shows a gradient with respect to h at a �xed p value (e.g. less rainfall,

stronger maximum vertical velocities and weaker maximum rain rates with increasing h).22

The nonlinear nature of moist processes is responsible for this resolution dependence as a

result of localized buoyancy sources, evident in spectral analysis of the time� and height�24

averaged vertical velocity.
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1. Introduction

Numerical models used for mesoscale weather forecasting can be assembled into two 2

groups depending on the approach used to solve the governing Navier�Stokes equations.

In the �rst group, the equations are kept in the di�erential form and both temporal and 4

spatial derivatives are approximated using �nite�di�erences (e.g. COAMPS, Hodur (1997),

WRF, Skamarock et al. (2005), MM5, Dudhia (1993), MC2, Benoit et al. (1997), LM, Doms 6

and Schättler (1997)). In the second group are methods based on an integral form, less

frequently used in mesoscale forecasting, which includes spectral (Aladin, Bubnova et al. 8

(1995)), pseudospectral, �nite�element, spectral element and �nite�volume models.

Spectral element models have been traditionally used in computational �uid dynamics 10

and more recently also in computational geophysical �uid dynamics. For example, atmo-

spheric phenomena have been studied on the global scale (e.g. Giraldo and Rosmond (2004); 12

Fournier et al. (2004)), and more recently also on the mesoscale (Giraldo and Restelli 2008;

Giraldo et al. 2010). Examples for the ocean include a density current model on a local scale 14

(Özgökmen et al. 2004), and general circulation model (Dupont and Lin 2004; Curchitser

et al. 1998). 16

Advances in high performance computing have led to substantial increase in the number

of computational cores and to a smaller extent improved speed per core. Availability of 18

computational resources is facilitating horizontal resolution re�nement for the numerical

weather prediction models on the global scale. In the future, one can foresee a natural 20

merging of global and local area modelling e�orts. Ideally, future uni�ed models will have

a �exibility to allow for varying resolution with grid re�nements over areas of interest. In 22

addition, the model should be able to utilize many cores and also scale well.

The spectral element (SE) method has the potential to meet this changing and chal- 24

lenging computational paradigm. This method provides a �exible platform, which supports

unstructured grids and provides �exibility to adjust the accuracy of the dynamical core with 26

a simple change of a control parameter. Moreover, the communication requirements in par-
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allel processing are minimized because the adjacent elements share only the boundary points

with no additional interior points to be exchanged (Kelly and Giraldo 2011). An additional2

novel characteristic of the SE model presented in this paper is the vertical discretization,

which is traditionally based on either a �nite�element (Béland and Beaudoin 1985) or �nite�4

di�erence formulation (Kim et al. 2008). The model applied in this study is two�dimensional

and spectral element in both horizontal and vertical direction. To our knowledge, this is the6

�rst fully compressible, nonhydrostatic spectral element model which also includes cloud

microphysics.8

Previous studies using an SE model (Giraldo and Restelli 2008) have used a �xed set of

control parameters which control the domain decomposition: the number of elements in the10

horizontal and vertical directions, hx and hz, respectively, and the polynomial order p (more

details in section 2). The purpose of this paper is to assess the strengths and weaknesses of a12

SE model through the systematic exploration of the parameter space and validate simulation

results of two idealized mesoscale phenomena: a linear, hydrostatic mountain wave and mid�14

latitude squall line.

In the �rst part of this paper, we use an analytic solution for a hydrostatic mountain16

wave to validate the numerical simulations with the SE model. We address the following

questions: 1) What is the range of h�p parameters that give adequate results? 2) How18

computationally expensive is the SE model compared to a typical �nite�di�erence model?

3) How quickly does the SE model converge to the �nal solution?20

In the second part, we assess the ability of the SE model to properly simulate the squall

line. Since there is no analytic solution, the typical approach with numerical simulations is to22

increase both spatial and temporal resolution until convergence is achieved. This approach

might not be viable for atmospheric convection (e.g. Weisman et al. (1997), Bryan et al.24

(2003)). Therefore we focus on the simulation of important characteristics (e.g. cloud forma-

tion, precipitation initiation, longevity of the storm system) of a squall line and integrated26

quantities (e.g. average precipitation accumulation, maximum vertical velocity), across the
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parameter space.

The structure of this paper is as follows: the model is described in Section 2; in Section 3 2

details of the experiment setup are given followed by discussion of results in Section 4. The

conclusions are presented in Section 5. 4

2. Model Description

a. Governing Equations 6

The governing equations for the compressible, nonhydrostatic numerical model of the

moist atmosphere are 8

∂ρ′

∂t
+ (ρ0 + ρ′)∇ · u + w

dρ0

dz
+ u · ∇ρ′ = 0 (1)

∂u

∂t
+ u · ∇u +

1

ρ0 + ρ′
∇p′ + gk(

ρ′

ρ0 + ρ′
− 0.61q′v + qc + qr) = µ∇2u (2)

∂θ′v
∂t

+ u · ∇θ′v = Sθ′
v
+ µ∇2θ′v, (3)

where air density (ρ), pressure (p), potential temperature (θ) water vapor mixing ratio (qv)

are separated into the vertically varying, hydrostatically balanced base state (subscript 0) 10

and perturbation (denoted by prime): ρ = ρ0(z)+ρ′(x, t). The wind vector has a horizontal

and vertical component u = (u(x, t), w(x, t))T, k is unit vector in vertical and g=9.81 m 12

s−2 is the acceleration of gravity.

Moisture related variables are mixing ratios of water vapor (qv), cloud water (qc) and 14

rain water (qr). They are predicted according to a simple microphysical mechanism for a

warm cloud, that does not include ice, snow and graupel, as follows 16

dqv
dt

= −Cc + Ec + Er + µ∇2qv

dqc
dt

= Cc − Ec − Ac −Kc + µ∇2qc

dqr
dt

= Ac +Kc − Er + Fr + µ∇2qr,

(4)

where Cc is condensation of cloud water, Ec is evaporation of cloud water, Er is evaporation
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of rain water, Ac is autoconversion of cloud water into rain water, Kc is the collection of

cloud water and Fr is the sedimentation of rain drops in the air parcel (Houze 1993). For a2

detailed description of each parameterized process see Klemp and Wilhelmson (1978).

The thermodynamic equation involves a source/sink term (Sθv) that describes latent heat4

release/uptake during phase changes of moisture variables. The momentum, thermodynamic

and moisture equations involve a di�usion term. The di�usivity coe�cient, µ = 200 m2s−1,6

represents arti�cial viscosity terms used for numerical stability. Note that the di�usion is ap-

plied only for the moist sumulations. The pressure (p) and the virtual potential temperature8

(θv) are de�ned as

p = ρRdT (1 + 0.61qv) (5)

θv = (1 + 0.61qv)T

(
p00

p

)Rd
cp

= (1 + 0.61qv)θ, (6)

with T being the air temperature, p00 = 105 Pa, reference air pressure, Rd = 287 J kg−1K−1,10

a speci�c gas constant of dry air and cp = 1004 J kg−1 speci�c heat at constant pressure for

dry air.12

b. Numerical model

Using the SE model, the computational domain Ω is decomposed into Ne nonoverlapping14

quadrilateral elements (Fig. 1, left panel)

Ω =
Ne⋃
e=1

Ωe. (7)

Generally, the elements do not need to be quadrilateral and structured. A mapping from the16

global�domain coordinate system x = (x, z) onto the element�local (Ωe) coordinate system

ξ = (ξ, η) is described by an element�speci�c Jacobian J = ∂x
∂ξ
, where the local coordinates18

satisfy (ξ, η) ∈ [−1, 1]2 (Fig 1, upper right panel).

The local element�wise solution of each variable f can be discretized using Nth order20
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polynomial basis

fd(ξ, t) =
K∑

k=1

ψk(ξ)f̂k(t), K = (N + 1)2, (8)

where fd is a discrete representation, ψk are expansion functions, f̂k are expansion coe�cients 2

and N + 1 is the number of expansion functions in each direction. The expansion functions

(Fig 1, lower right panel) are constructed as 4

ψk = hi(ξ(x)) · hj(η(x)), i, j = 1, . . . , N + 1, (9)

where hi and hj are Lagrange polynomials

hi(ξ) = − 1

N(N + 1)

(1− ξ2)P ′
N(ξ)

(ξ − ξi)PN(ξi)
, i = 1, . . . , N + 1, (10)

and PN(ξ) are Nth order Legendre polynomials. The expansion function hi is zero at all 6

nodal points except ξi. The chosen Legendre�Gauss�Lobato (LGL) grid points within the

elements (ξi, ηj), are not equally spaced (Fig 1, upper right panel), but are given as the roots 8

of

(1− ξ2)P ′
N(ξ) = 0. (11)

The LGL points with the associated quadrature weights ω(ξi) 10

ω(ξi) =
2

N(N + 1)

(
1

PN(ξi)

)2

(12)

can be directly used for the Gaussian quadrature, approximating integrals over a local ele-

ment Ωe 12∫
Ωe

f(x)dx =

∫ 1

−1

∫ 1

−1

f(ξ, η)J(ξ, η)dξdη '
N+1∑
i,j=1

ω(ξi)ω(ηj)f(ξi, ηj)|J(ξi, ηj)|. (13)

The governing equations to be solved are in the form

∂f

∂t
+ F (f) = 0. (14)
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Substituting for the discretized solution will result in a residual

R(fd) =
∂fd

∂t
+ F (fd), (15)

which can be minimized by various methods. In the Galerkin method, the residual is or-2

thogonal to the expansion functions

(R,ψk) = 0, k = 1, . . . , (N + 1)2, (16)

where the Legendre inner product (f, g) over the subdomain Ωe is de�ned as4

(f, g) =

∫
Ωe

f(x)g(x)dx. (17)

Combining (8), (15) and (16) leads to a system of di�erential equations

(N+1)2∑
n=1

Ink
df̂k

dt
= −

∫
Ωe

F

(N+1)2∑
n=1

ψn(ξ)f̂n(t)

ψkdξ, k = 1, . . . , N + 1. (18)

The orthogonality of expansion functions simpli�es the calculation of the mass matrix (Ink)6

Ink = (ψn, ψk) = ωn|Jn|δnk. (19)

The right hand side of (18) can be solved using the Gaussian quadrature. The spatial deriva-

tives appearing in the governing equations are constructed through the analytic derivatives8

of the basis functions (for brevity only one�dimensional example is provided)

∂f

∂x
=
∂f

∂ξ

∂ξ

∂x
=

∂

∂ξ

(
N+1∑
k=1

ψk(ξ)f̂k(t)

)
∂ξ

∂x
=

(
N+1∑
k=1

∂ψk(ξ)

∂ξ
f̂k(t)

)
∂ξ

∂x
. (20)

c. Time integration10

The left hand side of (18) can be readily integrated in time with a desired accuracy. The

nonuniform spacing of the nodal points can impose a severe constraint on a time step when12

using a regular explicit time integration scheme. For example, the ratio of the maximum to

minimum nodal spacing for the tenth order polynomial expansion functions is almost �ve14
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and the maximum time step required for numerical stability is limited by the minimum nodal

spacing. The terms in the governing equations can be rewritten in a compact vector form 2

∂q

∂t
= S(q), (21)

where q = (ρ′,uT, θv, qv, qc, qr)
T, and S represents all terms not involving time derivatives.

The semi-implicit time integration can be introduced in the previous equation as 4

∂q

∂t
= {S(q)− λL(q)}+ [λL(q)], (22)

where curly and square braces represent explicit and implicit integration, respectively, λ =

{0, 1} is a control �ag to invoke the implicit integration (λ = 1), and L is a linear approx- 6

imation of S that contains acoustic and gravity waves. The moisture related variables are

not responsible for either fast mode, so the linearized formulation contains only the �rst four 8

components of q

L(q) =



−w dρ0

dz
− ρ0∇ · u

− 1
ρ0

∂p′

∂x

− 1
ρ0

∂p′

∂z
− g ρ′

ρ0

−w dθv0

dz


. (23)

Instead of solving for each variable separately, they are combined into one pseudo�Helmholtz 10

equation for the pressure perturbation (Schur complement). Upon solving for the pressure,

each of the prognostic variables can be solved in sequence for the updated variables (Giraldo 12

et al. 2010). The time integrator is the second order backward di�erence method, BDF2

(Giraldo 2005). It is used in a semi�implicit mode permitting longer time steps compared 14

to fully explicit methods with equal or higher order of accuracy which have also been tested

(e.g. family of Runge�Kutta schemes). 16

As in most numerical models involving moist processes solved with a �nite�di�erence

scheme in the vertical, the microphysics computation is time�integrated separately to allow 18

a time step adjustment for the case when sedimentation of precipitable water is too fast.
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Moist processes are treated in a column�wise fashion, descending from the top of the domain

to the lowest level, moving laterally through the domain. The indexing of the elements,2

and all the loops in the source code can be completely unstructured and therefore not

readily applicable for microphysics calculations. For the purposes of this paper, the element-4

wise thermodynamic and moist variables are mapped to regular two�dimensional arrays

suitable for column�wise calculations. Once the microphysics computations are concluded,6

the updated variables are mapped back onto their local elements. As such, the actual

microphysical processes are not strictly computed within the semi�implicit realm, but the8

advection and di�usion of the moisture related variables are.

d. Accuracy10

When using a polynomial expansion basis, one frequently refers to it only by its order. It

should be emphasized that this is not the same 'order' as the one used to identify the leading12

term of the error when using �nite�di�erence schemes, which in fact describes accuracy.

Evaluation of Gaussian quadrature (RHS of (18)) over N+1 quadrature points, will be exact14

to machine precision as long as the polynomial integrand is of the order 2 ·(N+1)−3, or less

(Karniadakis and Sherman 2005). Applying the SE method to the governing equations will16

result in an inner product of two polynomials of the same (or lesser) degree. For example,

the product u∂ρ′

∂x
, subject to the orthogonality condition is of the 3N − 1 order. For the18

exact integration, at least 3
2
N + 1 points are needed, while only N + 1 are available. The

integrand is subsampled and consequently aliased. To eliminate this aliasing, a low�pass �lter20

is applied, but not directly to the chosen expansion functions because they are nodal. They

are transformed into modal functions �rst, �ltered using a Boyd�Vandeven �lter (Giraldo22

and Rosmond 2004) and inversely transformed to retrieve a �ltered set of nodal expansion

functions. The inexact integration has a very minimal impact for higher order polynomials24

(N ≥ 4) (Giraldo 1998). Note that an exact integration could be achieved by using a separate

set of quadrature points, but the accompanying computational cost is usually prohibitive26

9



due to the mass matrix no longer being diagonal. The errors stemming from the BDF2 time

integration are of second order accuracy. 2

3. Setup and Initial Conditions

The model is applied in a two�dimensional mode with a horizontal and vertical domain of 4

240 and 24 km, respectively. Due to the irregular spacing of nodal points within an element

in both the horizontal and vertical directions, a nominal resolution is introduced, de�ned as 6

the element's extent divided by the number of nodal points (minus one) in that direction.

When describing a simulation, its corresponding nominal horizontal and vertical resolution 8

are provided. The discrepancy between the actual adjacent nodal point spacing and the

associated nominal resolution increases with the polynomial order. 10

The desired nominal resolution can be achieved by increasing the number of elements

(h) while holding the polynomial order (p) constant ('h�re�nement'), keeping the element 12

number constant and increasing the polynomial order ('p-re�nement'), or varying both. The

limiting 'h-re�nement' case is a �nite�element method (high h, low p), while a similar limit 14

for the 'p-re�nement' is a spectral method (one element, high number of basis functions).

When investigating the resolution dependence of the SE model, one has to consider 16

exploration of the phase space de�ned by both parameters: the polynomial order and number

of elements. In order to achieve a nominal horizontal resolution representative for a mesoscale 18

model we choose the polynomial order to vary between 4 and 10 and the number of elements

in the horizontal direction between 6 and 120. The resulting nominal grid spacing varied 20

between 200 and 10000 m in 91 simulations overall (see Table 1 for details).

Note that the same re�nement applies to both the horizontal and vertical directions. It 22

may be desirable to keep the nominal vertical resolution constant in all experiments, such

as in Weisman et al. (1997), to focus solely on the e�ects of variations in the horizontal 24

resolution. This not practical to two reasons: i) the polynomial order is the same in both

10



directions in the current version of the model, and ii) the number of elements can be an integer

number only. The impact of varying the nominal vertical resolution is brie�y examined in2

section 4 and shown to have signi�cant impact as long as the nominal vertical resolution is

su�cient to adequately resolve the squall line cold pool. The ratio of nominal horizontal and4

vertical resolution is thus kept in the same range (1:3-1:5) in all simulations.

a. Dry Experiments � Linear, Hydrostatic Mountain Wave6

In the �rst suite of experiments, we focus on the case of a linear hydrostatic gravity wave

generated by �ow over small topography. The topography h(x) is de�ned with a bell shaped8

pro�le

h(x) =
hma

2

x2 + a2
, (24)

where hm = 1 m is the terrain height and a = 10.0 km is the mountain half�width. In10

an isothermal atmosphere (T0 = 250.0 K) the atmospheric stability is constant with height

(N = g√
cpT0

= 0.0196 s−1). By choosing an appropriate wind speed (ū = 20.0 m/s) both12

conditions for hydrostacity (Na/ū � 1) and linearity (Nhm/ū � 1) are satis�ed. The

computational domain is 240 km wide and 24 km deep. An active sponge layer at the lateral14

and top boundaries helps to damp re�ections from the domain boundaries. Since the width

of the lateral sponge is proportional to the nominal horizontal grid spacing, the domain16

extent is doubled horizontally for all cases with the nominal grid spacing greater than 4 km.

All simulations are performed using the semi-implicit time integrator. Each simulation is18

integrated for 12 hours (nondimensional time ūt/a = 86.4), assuring that a steady state is

reached.20

b. Moist Experiments � Squall Line

The initial conditions are speci�ed by a synthetic vertical pro�le (Fig. 2), based on a22

typical environment for midlatitude squall lines and used in several previous studies (Rotunno
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et al. 1988). It features increasing moisture in the lower troposphere and a fairly moist but

unsaturated air mass in the rest of the troposphere. The air is weakly stable close to the 2

ground with uniform stability (N=0.01 s−1) up to the tropopause at 12 km where the stability

increases (N=0.02 s−1). A low�level wind shear is added to promote longevity of the storm 4

by separating the storm in�ow from the downdraft created by precipitation. In addition, if

the horizontal component of vorticity of the environmental shear is approximately balanced 6

by the vorticity of the opposite sign, created by the density current of the out�ow, the storm

will remain quasi�stationary (Rotunno et al. 1988). The topography is set to zero for the 8

moist experiments, there is a sponge layer at the top of the domain, identical to the dry

simulations, but at the lateral boundaries we use periodic boundary conditions. The main 10

reason for choosing periodic lateral boundary conditions is to evaluate mass conservation

during the simulation. 12

The triggering mechanism for the storm evolution is a warm bubble (Rotunno et al. 1988),

centered at the height of 2 km, inserted at the initial time. The temperature perturbation 14

is de�ned as

∆θ =

 θc · cos2 πr
2
, r ≤ rc

0, r > rc

(25)

r =

√
(
x− xc

xr

)2 + (
z − zc

zr

)2, (26)

where θc=3.0 K, xc=0, zc=2, xr=10, zr=1.5 and rc=1.0 km. The perturbation reaches 16

its maximum value at the center (xc, zc) and decreases radially outward. The triggering

mechanism is di�erent from the density current used by Weisman et al. (1997). Due to the 18

periodic boundary conditions used in our simulations, the density current would enter the

domain from the upstream and cause an unwanted secondary line of storms. 20

The initial positive buoyancy perturbation initiates air parcel ascent. Once they reach

the level of free convection, the lifting continues as long as the parcels are less dense than the 22

surroundings, described by the Convective Available Potential Energy (CAPE), summarized

in Table 2. Values in excess of 2000 J kg−1 suggest the possibility of a strong convective 24

12



activity.

4. Results2

a. Dry Experiments � Linear, Hydrostatic Mountain Wave

We explore the h − p parameter space through analysis of the inviscid (i.e. no arti�cial4

viscosity µ = 0), linear, hydrostatic mountain wave simulations, for which an analytic so-

lution exists. Instead of calculating error statistics for the model variables separately, the6

model performance is assessed by calculating a second order quantity, the momentum �ux,

as a function of height, Mz, and compared to the analytic height�independent solution (Ma)8

(Durran and Klemp 1983)

Mz =

∫ ∞

−∞
ρ̄(z)u′(z)w(z)dx (27)

Ma = −π
4
ρ0Nūh

2
m = −0.4285 kg s−2, (28)

where ρ0 = 1.3937 kg m−3 is the air density at the surface and the u�component of velocity10

is decomposed into the mean state and perturbation (u = ū+ u′). Due to the small terrain

height (hm), the quadratures calculated at a constant height z (Mz) or at a constant model12

level k (Mk) are essentially the same. While evaluating the integrals, the lateral portions of

the domain with an active sponge are omitted. The normalized l2 norm is calculated using14

Mk and Ma for all the model levels from the ground (k = 1) to the uppermost level not

a�ected by the top sponge (k = ks)16

l2 =

√∑k=ks

k=1 (Mk −Ma)2∑k=ks

k=1 (Ma)2
. (29)

Simulations with higher nominal resolution (∆x ≤ 1 km) have the smallest error statistics

(right portion of Fig. 3). Cases with lower nominal horizontal resolution (∆x ≥ 5 km) and18

polynomial order (p ≤ 6) result in relatively poor l2 statistics (lower left portion of Fig.

13



3), due to a combined e�ect of the poorly resolved topography and error introduced with

inexact integration (Eqn. (13)) for lower polynomial orders. 2

A smaller subset of cases (shaded in gray in Table 1) is further analyzed to assess the

speed of convergence and computational cost as a function of the polynomial order (p=4, 4

6, 8 and 10) and number of elements (h), re�ected in the nominal horizontal resolution

(∆x=0.5, 1.0, 2.0 and 3.0 km). In addition, accuracy, convergence and timing comparisons 6

for a �nite�di�erence (FD) model (fully compressible, nonhydrostatic with a fourth order

horizontal advection, for more details see Durran and Klemp (1983)) are used with the same 8

domain and with the matching horizontal and vertical grid spacings.

A reduction of the l2 error at a particular point on Fig. 3 can be achieved by increasing the 10

polynomial order (p�re�nement), increasing the number of elements (h�re�nement) or both.

Keeping the relatively coarse nominal resolution constant (∆x=2.0, 3.0 km) and increasing 12

p yields only minor error reduction (compare dotted and dash�dotted lines of various shades

of gray in Fig. 4). There is not much change in the l2 error past t=5 hours regardless of the 14

polynomial order, which suggests that the nominal resolution is too coarse for an accurate

solution of the mountain wave. Starting with a �ner resolution (∆x=0.5 or 1.0 km) the 16

error continues to decrease and it is at least an order of magnitude smaller compared to the

previously analyzed set of cases with coarser resolution, regardless of the polynomial order. 18

Note that while the errors for the ∆x=1.0 km set reach minima at t=11 h, they are still

decreasing at the end of the simulation time for the ∆x=0.5 km set. For the �nite�di�erence 20

model (lines with diamonds in Fig. 4), increasing the spatial resolution and decreasing the

time step results in a more monotonic error reduction. Even at the highest resolution (solid 22

line with diamonds on Fig. 4) the error, dominated by the lowest�order truncation term, is

still at least an order of magnitude larger compared to the SE model (solid lines on Fig. 4). 24

Note that the error lines for the simulations with p=10 indicate the error is still decreasing

after 12 hours of simulation, previously observed by Giraldo and Restelli (2008). 26

Improving accuracy by using more elements (better resolution) is computationally more

14



costly. Wallclock time for the SE model increases approximately by an order of magnitude, as

the resolution gets re�ned from ∆x=2.0 to ∆x=1.0 km and similarly from ∆x=1.0 to ∆x=0.52

km (Fig. 5). Variations within each cluster of points are due to the polynomial order, where

the lowest order is the least expensive (compare matching symbols with di�erent shades of4

gray in Fig. 5). The �nite�di�erence model is computationally less expensive compared to

the SE model, when comparing timing results for matching nominal spacing (∆x) for the SE6

model with the constant spacing (∆x) for the FD model. Note, however, that if we change

the comparison metric to a desired value of l2 error, the SE model is faster. Moreover, at8

the same computational cost, the l2 error associated with the SE model is for the values of

∆x ≤ 1 km at least an order of magnitude smaller compared to the FD model. The error10

reduction is gradual with increasing resolution for the FD model (solid line with triangles),

while the major error reduction for the SE model occurs with a re�nement from ∆x=2.0 to12

∆x=1.0 km (Fig. 5). The integration time steps used for both models are at a maximum

allowed from a numerical stability perspective.14

To summarize the dry experiments, the resolution required to adequately resolve the

simulated phenomenon can be achieved by either h or p re�nement. At a �xed nominal reso-16

lution the error is almost always the largest for the lowest polynomial order, p=4, represented

by black lines in Fig. 4. Our recommendation is therefore for the polynomial order to be at18

least p=6. Higher values of p come with increasing computational cost, perhaps prohibitively

expensive for p=10, with the best ratio of accuracy and resources spent is achieved at p=8.20

The number of operations for a two�dimensional SE model described in this paper is on the

order of O(Ne · p3), with Ne being the total number of elements (a product of number of22

elements in the horizontal and vertical). As the resolution re�nement scales as O(Ne · p), it

is computationally more feasible to increase the number of elements, since the cost increases24

cubically with p. With the �xed nominal resolution, the ratio of the most expensive (p=10)

to the least expensive (p=4) simulation is 2.5, which can be calculated from the table 1 and26

con�rmed on Fig. 5.
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b. Moist Experiments � Squall Line

A brief synopsis of the storm evolution is based on a simulation with a typical mesoscale 2

resolution with ∆x=1 km and ∆z=0.2 km, which corresponds to a case with p=8 and

h=30. After the initialization, the �rst cloud forms at around t=900 s (Fig. 6a), the cloud 4

keeps growing with warm microphysical processes resulting in rain formation, which starts

accumulating at the surface at around t=1800 s (Fig. 6b). By t=4800 s, a strong cold 6

pool has formed at near the rear of the storm, characterized by negative equivalent potential

temperature perturbation, caused by evaporative cooling by rain water and downward motion 8

of cooler air from aloft (Fig. 6c). The cold pool spreads as a density current at the surface

and if the induced shear and associated horizontal component of vorticity are not exactly 10

balanced by the ambient shear, the squall line will propagate. New updrafts are being formed

in the upshear region (ahead of the location of the original initiation) as the density current 12

initiates forced lifting (secondary triggering mechanism), consistent with a broadening region

of accumulated precipitation and downshear tilt of the convective tower (Fig. 6d). The 14

subsequent triggered convection is generally weaker compared to the initial onset.

We start examining the results across the h�p parameter space by inspecting simulations 16

with the same nominal resolution ∆x=1 km, at t=6000 s (Figs 7a-f). Overall, the cloud

structure (anvil extent, downshear tilt of the convective tower), the cold pool intensity and 18

precipitation amount are similar among the simulations. The most signi�cant di�erence

among the simulations is the spatial distribution of the rainfall accumulation and related 20

lateral extent of the cold pool beneath the cloud. The only di�erences in the setup among

the cases are the polynomial order p and the number of elements in the horizontal direction 22

h, resulting in a variable nodal spacing where the ratio of the maximum to minimum nodal

spacing ranges from 1.9 (p=4, Fig. 7a) to 8.8 (p=20, Fig. 7f). Note that the last case with 24

high value of p is not described in Table 1. Three additional experiments are designed with

p=20. The number of horizontal and vertical elements is 6/3, 12/6 and 24/12, resulting in 26

nominal resolutions of 2.0, 1.0 and 0.5 km, respectively (not in Table 1). Despite the ratio of

16



the narrowest to the widest nodal spacing within the element is O(0.1) (Table 3), the overall

storm is still well resolved (Fig. 7f). The rapidly varying nodal spacing, in addition to large2

di�erences between the widest and narrowest nodal distance, does not result in preferred

location for convection or �single�cell� storms or updrafts.4

The similarity among the snapshots of the squall line simulation across the h�p parame-

ters with the same nominal spatial resolution extends the robustness of the SE model beyond6

the dry, dynamical core tests shown in the previous section. The disagreement in the total

precipitation accumulation is discussed later in this section.8

Adequately resolved storms (cases with ∆x < 3 km) undergo similar stages of devel-

opment, but di�er in the accumulated precipitation amount, as shown by a series of four10

simulations with the same polynomial order (p=8). The nominal resolution starts at ∆x=3

km and is progressively reduced by factors of two down to 0.375 km (Fig. 8). The simulation12

with the coarsest nominal resolution has an excessive amount of precipitation with an over-

all cloud outline similar to the shape at the higher resolution (Fig. 8a). As the resolution14

increases, the overall precipitation amount decreases, the spatial extent of the cold pool is

reduced, although the strength is comparable, and the size of the cloud gets smaller (Figs.816

b-d).

Without an existing analytic solution for comparison purposes, we assess the moist sim-18

ulation using metrics appropriate for convective events: total rain accumulation, maximum

rain rate and maximum vertical velocity. Simulations with a poorly resolved triggering20

thermal bubble, which never develop any convection are assigned zeros for all validation

parameters. These simulations are clustered in the lower left portion of the h-p parameter22

space (Figs 9a-c). In addition, cases �lling the rest of the void region share in common the

maximum nodal spacing being larger than 4 km (the actual limiting contour is between the24

∆x=2.5 and 3 km contours). This latter group of cases grossly overpredicts the precipitation

(Fig 8a) and all the validation parameters are assigned zeros. A threshold value of minimum26

grid spacing required for an adequately resolved squall line is similar to that for the FD
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models (Weisman et al. 1997), despite the di�erence in uniformity of grid points between

the SE and FD model. 2

The total rain accumulation for the duration of the simulation, averaged over the whole

domain (Fig. 9a) indicates a decrease with increasing h. The negative correlation between 4

the precipitation accumulation and nominal resolution is also apparent when comparing sim-

ulations with the same p (Figs. 8a-d). Note that the gradient is somewhat independent of 6

the polynomial order. The reduction of the rain accumulation is consistent with �ndings

of Weisman et al. (1997) where simulations with coarser resolution tended to exhibit slower 8

evolution, stronger storm circulation and higher overall precipitation amounts. The maxi-

mum rain rate (Fig. 9b) is reduced with increasing h, which is consistent with the reduction 10

of the total precipitation accumulation at higher resolution. A comparison of the maximum

vertical velocities indicates they are in the range between 20 and 30 m s−1 (Fig. 9c), similar 12

to values reported by Bryan et al. (2006) and Weisman and Rotunno (2004). There is a no-

ticeable trend of higher maximum vertical velocities (in excess of 30 m s−1) with increasing 14

nominal resolution. The apparent inconsistency with the reversed trend in vertical velocities,

compared to previously observed gradients of precipitation accumulation and maximum rain 16

rate, is due to scaling of the maximum rain rate by the corresponding nodal spacing. If

similar scaling is applied to the vertical velocities, as a proxy for the vertical mass �ux, there 18

is again a reduction in values with increasing resolution (not shown).

A trend that can be recognized from Figs 9a-c suggests that results are more dependent 20

on the h than p re�nement and that the gradient with respect to h is consistent for all

analyzed quantities. These conclusions di�er from Weisman et al. (1997), but in their study 22

the �nest resolution is 1 km, the horizontal grid spacing is constant and more importantly,

the sub�gridscale mixing is parameterized. 24

For dry simulations of a density current with increasing resolution (Straka et al. 1993), the

solutions are converging towards the solution obtained with the �nest resolution. Mixing 26

has a strong e�ect on the overall evolution of the storm. When utilizing a sub�gridscale
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physical mixing that scales with the horizontal resolution, a certain degree of convergence of

solutions can be expected when spanning a wide range of horizontal resolutions (Weisman2

et al. 1997). If the resolution is progressively re�ned, the results might become di�erent

to some extent as documented by Bryan et al. (2003) and in this paper. We hypothesize4

that the nonlinear character of the moist processes leads to this behavior. The spatial and

temporal distributions of buoyancy perturbations depend on localized phase changes, which6

will di�er among simulations with di�erent nodal point distribution. To explore this issue

further, we ran an additional set of cases (p=8, increasing h) based on the setup for the squall8

line simulations, except with no moisture at the initial time. We calculated power spectra

of vertical velocities, averaged in time and height, as a function of horizontal wavelength.10

Since the model data is on a nonuniformly spaced grid, it is resampled with the horizontal

spacing that approximates the narrowest nodal spacing. If the above hypothesis holds, the12

spectra for the �dry� squall line simulations should converge. The power spectra peaks are

at the same wavelength and the spectra width do not change with the resolution (Fig. 10b),14

except for the case with ∆x=3 km, which poorly resolves the initial thermal bubble. For the

original squall line simulations, there is a broadening of the power spectra and a shifting of16

the maxima towards the shorter wavelengths with increasing nominal resolution (Fig. 10a).

Whether this trend continues or if the spectra collapse with further resolution re�nement18

is beyond the scope of this research. In a separate subset of experiments (p=8, increasing

h) with no latent heat release or uptake permitted, the cloud shapes are almost exactly the20

same independent of the spatial resolution.

The average time between sequential discrete updrafts is determined by local maxima22

in positive vertical velocities. The time is well within the documented range of Rotunno

et al. (1988), corresponding to their �optimal state�, except when the nominal resolution is24

less than 1 km the average time becomes longer, because the subsequent convective cells

take longer time to form. In addition, the time between the initial storm triggering and26

rain reaching the ground is consistent with �ndings in the literature (Weisman et al. 1997)
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throughout the parameter space (not shown), suggesting that the choice of h�p parameters

does not a�ect the storm triggering by the initial buoyancy perturbation. 2

One of the concerns when simulating severe convection using a variable grid is develop-

ment of preferential locations for convection, manifested by extrema in vertical velocities. 4

To test the uniformity of the spatial distribution of vertical momentum, we combined the

vertical velocities at each cell into 0.5 m s−1 bins in the range [4.75, 20.75[ m s−1, for all 6

the available output times. Next, bins of all vertical cells at a �xed horizontal distance are

combined, resulting in a two-dimensional histogram revealing a spatial distribution of oc- 8

currence for a particular vertical velocity bin (not shown). Most of the motions with higher

absolute vertical velocities are occurring in the eastern part of the domain, as expected, 10

where the squall line slowly propagates. There is no visible evidence of convection triggering

at preferred locations (narrowest nodal spacing next to the element boundaries). Further- 12

more, bins of all the cells with the same horizontal dimension are combined and normalized

to obtain a relative frequency histogram as a function of the vertical velocity (not shown). 14

If the convection is indeed taking place closer to the element boundaries where the nodal

spacing is at a minimum, this would manifest itself in the histogram by a higher (lower) 16

relative frequency of the narrower (wider) cells, which is not the case.

As mentioned in section 3, the number of elements can be independently set in both 18

directions, changing the respective nominal resolution. We designed a small subset of four

experiments based on a case with p=10 and ∆x=1 km to assess the e�ect of varying nominal 20

vertical resolution with the nominal horizontal grid spacing held constant. The number of

elements in the vertical direction is 4, 10, 20 and 40, resulting in nominal vertical resolution of 22

600, 240, 120 and 60 m, respectively. The horizontal location of the most intense convection,

the magnitude of the maximum updraft and the overall precipitation accumulation are not 24

sensitive to the vertical resolution.

In a series of additional tests, sensitivity to domain length, symmetry, wind shear and 26

viscosity are investigated. The choice of periodic boundary conditions does not have a sig-
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ni�cant impact on the results, when compared to simulations with triple the domain length.

With no ambiental wind shear, a symmetric storm cloud is expected, but an asymmetry can2

develop if the initial thermal bubble perturbation is not centered exactly over the symmetric

nodal points. If the wind shear is too strong, no storm develops, similar to �ndings of Ro-4

tunno et al. (1988) and Weisman et al. (1988). Small values of viscosity (µ<5 m2 s−1) can

lead to numerical instabilities, while large values (µ>750 m2 s−1) inhibit convective activity.6

5. Conclusions

In this paper we examine the characteristics of a two�dimensional spectral element (SE)8

model for dry and moist mesoscale atmospheric test cases: a linear, hydrostatic mountain

wave and a squall line, respectively.10

There are two parameters that control the setup of the SE model: the number of ele-

ments into which the computational domain is subdivided, and polynomial order of the basis12

functions (p), which determines the number of nodal points within the element. The spatial

resolution for the SE model is determined by the choice of the two parameters with ranges14

from 4 to 10 (p) and 6 to 120 (number of elements in horizontal, h), resulting in the average

horizontal (vertical) resolution ranging from 200 (40) to 10000 (1500) m, and a total of 9116

simulations spanning the h�p parameter space.

For the linear hydrostatic mountain wave case,an analytic solutionis used to validate the18

model performance. Generally, cases with the nominal resolution less than 2 km yield the

best results, with no signi�cant gain in accuracy if the resolution is re�ned beyond 1 km. The20

least skillful results are attributed to coarse resolution, not su�cient to resolve the mountain

barrier, and to the low polynomial order, which contributes to the error when using the22

inexact integration. Simulations with coarser nominal resolution converge faster towards the

steady state solution, but with larger error. In addition, the SE model results are compared24

to solutions obtained by a �nite�di�erence (FD) model with matching spatial resolutions,
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for accuracy and timing purposes. The error for the FD simulations monotonically decreases

with re�ned spacing, but even with the �nest grid spacing (0.5 km), the error is an order of 2

magnitude larger compared to the �ne resolution cluster of the SE model. At a given resolu-

tion, matching the nominal spacing (∆x) of the SE model with the constant spacing (∆x) of 4

the FD model, the SE model is approximately an order of magnitude more computationally

expensive than the FD model. The situation is reversed, if a speci�ed error is desired � the 6

SE models is less expensive. Moreover, the error of the SE model for the nominal spacing

∆x ≤ 1 km is an order of magnitude lower compared to the FD model at the same reso- 8

lution. The computational cost as a function of the grid spacing and associated time step

increases almost uniformly for the FD model, while there is almost no improvement in error 10

with associated computational cost when increasing the nominal resolution from 3 to 2 km

or from 1 to 0.5 km for the SE model. The best improvement occurs when the resolution is 12

re�ned from 2 to 1 km.

Simulations that adequately resolve the initial warm bubble perturbation for the squall 14

line case, successfully simulate the upscale transition from a local, isolated convective cell

into a mesoscale, organized storm system. The results of the main set of moist experiments 16

and additional sensitivity tests suggest the overall ability of the SE model to adequately

simulate the squall line. Increasing the nominal resolution below 1 km leads to some dif- 18

ferences. Qualitatively, the cloud shapes are very similar, but simulations with the �nest

nominal resolution tend to produce stronger maximum vertical velocities with more local- 20

ized and reduced precipitation accumulation. We hypothesize and o�er evidence that this

behavior can be explained by a nonlinear nature of latent heating and localization of buoy- 22

ancy sources. A comparison of averaged power spectra of vertical velocity for the original

squall line simulations and a modi�ed set with no initial moisture indicates shifting of the 24

power spectra toward smaller scales for the moist cases, when the resolution is re�ned. How

would a continuing resolution re�nement a�ect power spectra for the original squall line 26

remains an open question. At this point simulations with very high spatial resolution are
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computationally too expensive to run with a serial code.

The SE model supports both structured and unstructured grids. The accuracy can be2

adjusted with the same code by choosing the control parameters (h and p). Unlike the nu-

merical models that use the terrain�following vertical coordinate, the SE model can handle4

complex topographical features with extreme slope angles, such as in urban environments.

For all these advantages, there is a price to pay. The source code is generally less straight-6

forward to understand compared to the source code of the FD models. As mentioned earlier,

the SE models are computationally more expensive compared to the FD models, when used8

at the same spatial resolution.

A recommended subspace of the h�p parameter space depends on a compromise among10

acceptable error, computational cost, and required resolution to resolve the feature of choice.

Based on our results for inviscid, dry, and viscous, moist simulations of the mesoscale12

phenomena, which are dimensionally similar, the nominal resolution should be within the

∆x=0.5-2 km range and the polynomial order in the range p=5-10. This study is to our14

knowledge the �rst attempt to systematically map the h�p parameter space for using the SE

model in mesoscale atmospheric modeling.16

The results are certainly encouraging enough to warrant further investigations in using

the SE model for more realistic mesoscale atmospheric modeling scenarios. The model in18

its dry and inviscid form is currently being tested in three dimensions and on massively�

parallel computers. This will allow us to extend the parameter space to include very �ne20

spatial resolutions which are prohibitively expensive in the serial mode. In the future, we

plan to adapt the microphysics scheme to three dimensions, expand it to include the ice22

phase and implement a sub�gridscale mixing parameterization.
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Height (m) 0 500 1000 1500 2000
CAPE (J/kg) 2383 2426 2781 1968 1133

Table 2. Initial air-parcel heights and corresponding CAPE values.
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p ∆xmax/∆xmin ∆xmax/∆x ∆xmin/∆x
4 1.90 1.31 0.69
5 2.43 1.43 0.59
6 2.76 1.41 0.51
7 3.26 1.47 0.45
8 3.62 1.45 0.40
9 4.11 1.49 0.36
10 4.48 1.48 0.33
20 8.77 1.53 0.17

Table 3. Polynomial orders (p) and associated nodal spacing ratios.
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Fig. 7. Same as Fig. 6, but at time t=6000 s and for cases a) p=4, h=60, b) p=5, h=48,
c) p=6, h=40, d) p=8, h=30, e) p=10, h=24 and f) p=20, h=12. All cases have the same
nominal horizontal resolution ∆x=1 km and time step ∆t=0.25 s.

42



0

2

4

6

8

10

12

14

-60 -30 0 30 60

30
60
90

120

���������
	���
��������

� �� �
� �� � �
 

! "� #
$ %%'&
� ��
 

0.1
1

10
100

�(�

0

2

4

6

8

10

12

14

-60 -30 0 30 60

30
60
90

120

���������
	���
��������

� �� �
� �� � �
 

! "� #
$ %%'&
� ��
 

0.1
1

10
100

( �

0

2

4

6

8

10

12

14

-60 -30 0 30 60

30
60
90

120

���������
	���
��������

� �� �
� �� � �
 

! "� #
$ %%'&
� ��
 

0.1
1

10
100

�(�

0

2

4

6

8

10

12

14

-60 -30 0 30 60

30
60
90

120

���������
	���
��������

� �� �
� �� � �
 

! "� #
$ %%'&
� ��
 

0.1
1

10
100

( �

Fig. 8. Same as Fig. 6, but at time t=6000 s and for cases a) h=10, ∆x=3.0 km, ∆t=0.5 s,
b) h=20, ∆x=1.5 km, ∆t=0.5 s, c) h=40, ∆x=0.75 km, ∆t=0.25 s and d) h=80, ∆x=0.375
km, ∆t=0.1 s . All cases with p=8.
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Fig. 10. Power spectra for simulations with p=8 and varying nominal resolutions:∆x=3.0
km (thickest light grey line), ∆x=1.5 km (thick grey line), ∆x=0.75 km (thin dark grey line)
and ∆x=0.375 km (thinnest black line). Panel a) is for the control squall line simulations
and panel b) is for the �dry� squall line (see text for further explanation). The spectra
are averaged over height (0-12 km, with 0.5 km increment) and time (0-4 h, with 300 s
increment).
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